0=2x^2-25/8-x

Simple and best practice solution for 0=2x^2-25/8-x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=2x^2-25/8-x equation:



0=2x^2-25/8-x
We move all terms to the left:
0-(2x^2-25/8-x)=0
Domain of the equation: 8-x)!=0
We move all terms containing x to the left, all other terms to the right
-x)!=-8
x!=-8/1
x!=-8
x∈R
We add all the numbers together, and all the variables
-(2x^2-25/8-x)=0
We get rid of parentheses
-2x^2+x+25/8=0
We multiply all the terms by the denominator
-2x^2*8+x*8+25=0
Wy multiply elements
-16x^2+8x+25=0
a = -16; b = 8; c = +25;
Δ = b2-4ac
Δ = 82-4·(-16)·25
Δ = 1664
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1664}=\sqrt{64*26}=\sqrt{64}*\sqrt{26}=8\sqrt{26}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8\sqrt{26}}{2*-16}=\frac{-8-8\sqrt{26}}{-32} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8\sqrt{26}}{2*-16}=\frac{-8+8\sqrt{26}}{-32} $

See similar equations:

| 4.6/20.1=y/44.2 | | x+12=x-14 | | 4+t=5t | | 5*100=y*250 | | 2(g+6)=-2 | | 5x100=Yx250 | | x^2=5.63 | | 35=1.8y+32 | | n+21/4=-41/2 | | y+6/y=5/4 | | 16x-38=16x-38 | | 9=4g-7 | | k/4+16=20 | | 3w+-9=0 | | -3(6+-8)+-5=9(b+2)+1 | | 9=h/3-7 | | 10y=16+2y | | 31-4=2x+6 | | 2a+8=(a+4) | | 2n-(5+n)=17 | | -4(6y-5)=23-3(8y+1 | | 56x+1,794x-13=37(50x+35) | | 2(28-y)+4y=78 | | 3/8y=4/11 | | 2×2y=1 | | 3(2x+3)+11=8x+7-2x+13 | | ?=7x+7 | | (25+4.9x)x=0 | | 16=3u+7 | | −95(x−6)(13x+4)=0 | | 0=(25+4.9x)x | | 6(4x+8)=24x-2 |

Equations solver categories